Groups - Center 13

There are 4,845,739 groups of squares with center 13. The biggest group has 228,960 squares. The 3,884,052 smallest groups have 2 squares each.

There are 452 group sizes.

Number of Groups of each Group Size
  Group  
Size
Number
of Groups
  Group  
Size
Number
of Groups
  Group  
Size
Number
of Groups
  Group  
Size
Number
of Groups
  Group  
Size
Number
of Groups
  Group  
Size
Number
of Groups
228960 1 1608 6 864 8 532 2 312 36 144 109
174240 2 1592 2 852 4 528 23 310 8 142 32
145632 2 1584 2 848 10 526 4 308 10 140 76
90144 1 1576 2 844 4 524 2 306 4 138 44
48544 3 1548 2 840 14 520 12 304 38 136 172
45072 2 1536 2 836 8 518 20 302 4 134 36
43776 1 1532 4 832 8 516 10 300 16 132 92
22536 4 1520 4 828 4 512 4 298 4 130 12
18784 2 1512 4 826 8 508 6 296 22 128 178
16896 2 1508 4 808 4 506 8 292 24 126 24
12544 2 1474 4 804 4 504 6 288 28 124 94
12192 2 1468 4 800 16 500 14 286 4 122 28
11568 2 1456 4 796 4 496 6 284 18 120 172
10848 2 1446 4 792 14 492 8 282 4 118 28
10272 2 1432 4 784 4 490 12 280 24 116 154
9004 2 1426 8 780 4 488 19 278 8 114 20
8352 2 1424 2 776 8 484 6 276 16 112 220
7008 2 1400 8 772 4 482 4 272 36 110 64
6656 2 1368 4 770 4 480 18 268 26 108 154
6456 4 1352 6 768 4 476 12 264 32 106 80
6432 2 1344 4 762 4 472 26 262 8 104 208
6400 2 1336 4 760 6 468 2 260 28 102 76
6272 1 1328 4 756 4 464 16 258 4 100 290
6096 1 1312 2 752 14 460 10 256 45 98 104
5936 6 1296 8 750 8 456 18 254 4 96 359
5536 2 1294 8 744 14 454 4 252 30 94 48
5264 4 1288 18 736 8 452 10 250 4 92 230
5088 2 1276 4 728 4 448 52 248 30 90 120
4992 4 1272 4 724 8 444 10 244 14 88 322
4904 2 1256 4 722 4 440 6 240 48 86 100
4376 2 1248 2 720 8 436 8 238 4 84 252
4320 2 1240 8 716 4 432 14 236 12 82 120
4256 7 1232 2 712 10 430 4 234 8 80 538
4224 4 1224 4 708 4 428 2 232 44 78 164
4104 2 1216 10 704 6 424 24 230 16 76 408
4096 2 1212 4 700 4 420 16 228 18 74 176
4048 2 1204 4 692 8 416 20 226 28 72 607
3312 2 1156 4 688 8 412 8 224 86 70 256
3216 4 1136 4 684 4 410 12 222 12 68 418
3120 2 1132 2 680 4 408 8 220 42 66 248
3068 4 1128 4 676 16 404 18 218 4 64 1032
3064 2 1124 2 672 14 402 4 216 46 62 268
2928 4 1100 10 668 4 400 10 214 12 60 742
2844 4 1096 4 664 8 392 4 212 28 58 308
2736 4 1084 6 656 9 390 4 210 8 56 1094
2728 4 1068 8 648 8 386 4 208 53 54 420
2672 6 1064 2 640 2 384 16 206 16 52 910
2640 4 1056 3 636 6 382 4 204 86 50 576
2596 6 1040 10 632 4 380 2 202 20 48 1505
2592 2 1032 2 628 4 378 4 200 74 46 552
2576 4 1024 6 624 8 376 34 198 4 44 1364
2432 12 1020 4 620 8 374 4 196 28 42 756
2336 4 1016 4 616 18 372 12 194 4 40 2350
2172 4 1008 4 608 6 370 4 192 104 38 984
2160 4 1004 4 604 8 368 6 190 4 36 2476
2136 4 1000 4 600 16 364 20 188 32 34 1232
2092 6 998 4 596 8 360 18 186 12 32 4326
2080 8 992 4 592 12 358 4 184 70 30 1780
2064 2 988 4 588 4 356 16 182 12 28 4006
2016 4 980 16 584 6 354 4 180 18 26 2688
1960 5 972 4 580 6 352 34 178 12 24 7314
1952 6 960 2 578 4 348 12 176 98 22 3936
1944 1 952 6 576 22 346 16 174 24 20 10026
1936 6 944 4 572 4 344 32 172 16 18 6524
1920 2 936 4 570 4 342 4 170 8 16 21628
1856 5 928 14 566 4 340 18 168 112 14 11300
1848 4 916 4 564 8 336 14 166 8 12 26800
1800 4 912 4 560 6 334 4 164 40 10 31412
1776 2 904 4 556 4 332 6 162 28 8 140558
1760 2 900 4 552 4 330 12 160 82 6 82972
1736 2 896 17 550 4 328 16 158 40 4 578644
1728 2 892 4 548 12 326 4 156 56 2 3884052
1696 18 888 6 544 20 324 24 154 24 - -
1664 4 880 7 542 4 322 4 152 134 - -
1628 4 876 8 540 8 320 37 148 70 - -
1616 4 872 4 536 6 316 24 146 12 - -

Note 1: For terms used below see Terms.

Note 2: Group numbers refer to all the groups, not just those with center 13.

Groups 1 to 5

These are symborder squares. The associative squares, (group 7 below), and those of 9 other groups are also symborder.

The number of squares in the group is shown below each group number.

Group 1: concentric, symlateral hybrid
Group 2: concentric
Group 3: symlateral
Group 4: associative, concentric hybrid
Group 5: associative, symlateral hybrid

Order5Special makes the concentric squares.

Groups 6 to 10

Groups 6, 10, 11 (below): middle row/column are symmetric; main diagonal pairs are adjacent, interleaved
Group 10: opposite paired
Group 11: side paired
Group 6:   hybrid of groups 10, 11 with twice as many squares
Group 7:   associative
Group 8:   octant boundary pairs are interleaved
Group 9:   octant boundary pairs are adjacent

Order5Special makes the associative squares.

Next 15 Groups

Group 10 combines characteristics of groups 17 and 19 with twice as many squares.
Group 11 combines characteristics of groups 18 and 20 with twice as many squares.

Last 5 Groups