Miguel Angel Amela

General Pico – La Pampa – Argentina miguel.amel@gmail.com



# Definition of Franklin Square

- **1)** The entries are: 1, 2, 3,  $\dots$  n<sup>2</sup>.-
- 2) The entries of every row and column add to a common sum called the magic sum:

$$M_{S_{(n)}} = (n^3 + n)/2$$

3) The entries in every half-row and half-column add to half the magic sum:

$$Hrc_{(n)} = (n^3 + n) / 4$$

4) The entries of the main bent diagonals and all the bent diagonals parallel to them, add the magic sum:

$$Bd_{(n)} = M_{S(n)}$$

**5)** The adjacent entries of every  $2 \times 2$  sub-squares add the sum:

$$2x2Ssq_{(n)} = 2(n^2 + 1)$$

# 8x8 Franklin Squares

Daniel Schindel, Matthew Rempel and Peter Loly <sup>1)</sup> determined that the 8x8 Franklin Squares has 1.105.920 solutions; with 737.280 Semi-Magic (every main diagonal don't add the magic sum) and 368.640 Magic (every main diagonal add the magic sum). The 368.640 Magic are also Pandiagonal (every secondary diagonal add the magic sum); solutions that I corroborated in 2006 <sup>6)</sup>.-

| 14 | 3  | 62 | 51  | 46  | 35   | 30   | 19 |
|----|----|----|-----|-----|------|------|----|
| 53 | 60 | 5  | 12  | 21  | 28   | 37   | 44 |
| 11 | 6  | 59 | 54  | 43  | 38   | 27   | 22 |
| 55 | 58 | 7  | 10  | 23  | 26   | 39   | 42 |
| 9  | 8  | 57 | 56  | 41  | 40   | 25   | 24 |
| 50 | 63 | 2  | 15  | 18  | 31   | 34   | 47 |
| 16 | 1  | 64 | 49  | 48  | 33   | 32   | 17 |
|    |    | Se | mi- | -Ma | igic | , 2) |    |

| 1  | 46 | 51 | 32 | 35   | 62          | 17 | 16 |
|----|----|----|----|------|-------------|----|----|
| 60 | 23 | 10 | 37 | 26   | 7           | 44 | 53 |
| 14 | 33 | 64 | 19 | 48   | 49          | 30 | 3  |
| 55 | 28 | 5  | 42 | 21   | 12          | 39 | 58 |
| 9  | 38 | 59 | 24 | 43   | 54          | 25 | 8  |
| 63 | 20 | 13 | 34 | 29   | 4           | 47 | 50 |
| 6  | 41 | 56 | 27 | 40   | 57          | 22 | 11 |
| 52 | 31 | 2  | 45 | 18   | 15          | 36 | 61 |
|    |    |    | М  | igic | <b>,</b> 6) |    |    |

## 16x16 Franklin Squares

For the 16x16 Franklin Squares, also has been obtained Semi-Magic and Magic solutions:

| 200 | 217 | 232 | 249 | 8   | 25  | 40  | 57  | 72  | 89  | 104 | 121 | 136 | 153 | 168 | 185 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 58  | 39  | 26  | 7   | 250 | 231 | 218 | 199 | 186 | 167 | 154 | 135 | 122 | 103 | 90  | 71  |
| 198 | 219 | 230 | 251 | 6   | 27  | 38  | 59  | 70  | 91  | 102 | 123 | 134 | 155 | 166 | 187 |
| 60  | 37  | 28  | 5   | 252 | 229 | 220 | 197 | 188 | 165 | 156 | 133 | 124 | 101 | 92  | 69  |
| 201 | 216 | 233 | 248 | 9   | 24  | 41  | 56  | 73  | 88  | 105 | 120 | 137 | 152 | 169 | 184 |
| 55  | 42  | 23  | 10  | 247 | 234 | 215 | 202 | 183 | 170 | 151 | 138 | 119 | 106 | 87  | 74  |
| 203 | 214 | 235 | 246 | 11  | 22  | 43  | 54  | 75  | 86  | 107 | 118 | 139 | 150 | 171 | 182 |
| 53  | 44  | 21  | 12  | 245 | 236 | 213 | 204 | 181 | 172 | 149 | 140 | 117 | 108 | 85  | 76  |
| 205 | 212 | 237 | 244 | 13  | 20  | 45  | 52  | 77  | 84  | 109 | 116 | 141 | 148 | 173 | 180 |
| 51  | 46  | 19  | 14  | 243 | 238 | 211 | 206 | 179 | 174 | 147 | 142 | 115 | 110 | 83  | 78  |
| 207 | 210 | 239 | 242 | 15  | 18  | 47  | 50  | 79  | 82  | 111 | 114 | 143 | 146 | 175 | 178 |
| 49  | 48  | 17  | 16  | 241 | 240 | 209 | 208 | 177 | 176 | 145 | 144 | 113 | 112 | 81  | 80  |
| 196 | 221 | 228 | 253 | 4   | 29  | 36  | 61  | 68  | 93  | 100 | 125 | 132 | 157 | 164 | 189 |
| 62  | 35  | 30  | 3   | 254 | 227 | 222 | 195 | 190 | 163 | 158 | 131 | 126 | 99  | 94  | 67  |
| 194 | 223 | 226 | 255 | 2   | 31  | 34  | 63  | 66  | 95  | 98  | 127 | 130 | 159 | 162 | 191 |
| 64  | 33  | 32  | 1   | 256 | 225 | 224 | 193 | 192 | 161 | 160 | 129 | 128 | 97  | 96  | 65  |

Semi-Magic<sup>2)</sup>

| 1 160 226 127 227 126 4 157 161 224 66 63 67 62 164 221   252 101 27 134 26 135 249 104 92 37 187 198 186 199 89 40   29 132 254 99 255 98 32 129 189 196 94 35 95 34 192 193   232 121 7 154 6 155 229 124 72 57 167 218 166 219 69 60   9 152 234 119 235 118 12 149 169 216 74 55 75 54 172 213   244 109 19 142 18 143 241 112 84 45 179 206 178 207 81 48   21 140 246 107 247 106 24                                                                                                                                                                                                                   |     |     |     |     |     |     |     |     |     |     |      |     |     |     |     |     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|-----|-----|-----|-----|-----|
| 252 101 27 134 26 135 249 104 92 37 187 198 186 199 89 40   29 132 254 99 255 98 32 129 189 196 94 35 95 34 192 193   232 121 7 154 6 155 229 124 72 57 167 218 166 219 69 60   9 152 234 119 235 118 12 149 169 216 74 55 75 54 172 213   244 109 19 142 18 143 241 112 84 45 179 206 178 207 81 48   21 140 246 107 247 106 24 137 181 204 86 43 87 42 184 201   240 113 15 146 14 147 237 <td>1</td> <td>160</td> <td>226</td> <td>127</td> <td>227</td> <td>126</td> <td>4</td> <td>157</td> <td>161</td> <td>224</td> <td>66</td> <td>63</td> <td>67</td> <td>62</td> <td>164</td> <td>221</td>         | 1   | 160 | 226 | 127 | 227 | 126 | 4   | 157 | 161 | 224 | 66   | 63  | 67  | 62  | 164 | 221 |
| 29 132 254 99 255 98 32 129 189 196 94 35 95 34 192 193   232 121 7 154 6 155 229 124 72 57 167 218 166 219 69 60   9 152 234 119 235 118 12 149 169 216 74 55 75 54 172 213   244 109 19 142 18 143 241 112 84 45 179 206 178 207 81 48   21 140 246 107 247 106 24 137 181 204 86 43 87 42 184 201   240 113 15 146 14 147 237 116 80 49 175 210 174 211 77 52   17 144 242 111 243 110 20 <td>252</td> <td>101</td> <td>27</td> <td>134</td> <td>26</td> <td>135</td> <td>249</td> <td>104</td> <td>92</td> <td>37</td> <td>187</td> <td>198</td> <td>186</td> <td>199</td> <td>89</td> <td>40</td>       | 252 | 101 | 27  | 134 | 26  | 135 | 249 | 104 | 92  | 37  | 187  | 198 | 186 | 199 | 89  | 40  |
| 232 121 7 154 6 155 229 124 72 57 167 218 166 219 69 60   9 152 234 119 235 118 12 149 169 216 74 55 75 54 172 213   244 109 19 142 18 143 241 112 84 45 179 206 178 207 81 48   21 140 246 107 247 106 24 137 181 204 86 43 87 42 184 201   240 113 15 146 14 147 237 116 80 49 175 210 174 211 77 52   17 144 242 111 243 110 20 141 177 208 82 47 83 46 180 205   236 117 11 150 10 151 233<                                                                                                                                                                                                              | 29  | 132 | 254 | 99  | 255 | 98  | 32  | 129 | 189 | 196 | 94   | 35  | 95  | 34  | 192 | 193 |
| 9 152 234 119 235 118 12 149 169 216 74 55 75 54 172 213   244 109 19 142 18 143 241 112 84 45 179 206 178 207 81 48   21 140 246 107 247 106 24 137 181 204 86 43 87 42 184 201   240 113 15 146 14 147 237 116 80 49 175 210 174 211 77 52   17 144 242 111 243 110 20 141 177 208 82 47 83 46 180 205   236 117 11 150 10 151 233 120 76 53 171 214 170 215 73 56   13 148 238 115 239 114 1                                                                                                                                                                                                              | 232 | 121 | - 7 | 154 | 6   | 155 | 229 | 124 | 72  | 57  | 167  | 218 | 166 | 219 | 69  | 60  |
| 244 109 19 142 18 143 241 112 84 45 179 206 178 207 81 48   21 140 246 107 247 106 24 137 181 204 86 43 87 42 184 201   240 113 15 146 14 147 237 116 80 49 175 210 174 211 77 52   17 144 242 111 243 110 20 141 177 208 82 47 83 46 180 205   236 117 11 150 10 151 233 120 76 53 171 214 170 215 73 56   13 148 238 115 239 114 16 145 173 212 78 51 79 50 176 209   248 105 23 138 22 139 2                                                                                                                                                                                                              | 9   | 152 | 234 | 119 | 235 | 118 | 12  | 149 | 169 | 216 | - 74 | 55  | 75  | 54  | 172 | 213 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 244 | 109 | 19  | 142 | 18  | 143 | 241 | 112 | 84  | 45  | 179  | 206 | 178 | 207 | 81  | 48  |
| 240   113   15   146   14   147   237   116   80   49   175   210   174   211   77   52     17   144   242   111   243   110   20   141   177   208   82   47   83   46   180   205     236   117   11   150   10   151   233   120   76   53   171   214   170   215   73   56     13   148   238   115   239   114   16   145   173   212   78   51   79   50   176   209     248   105   23   138   22   139   245   108   88   41   183   202   182   203   85   44     25   136   250   103   251   102   28   133   185   200   90   39   91   38                                                      | 21  | 140 | 246 | 107 | 247 | 106 | 24  | 137 | 181 | 204 | 86   | 43  | 87  | 42  | 184 | 201 |
| 17 144 242 111 243 110 20 141 177 208 82 47 83 46 180 205   236 117 11 150 10 151 233 120 76 53 171 214 170 215 73 56   13 148 238 115 239 114 16 145 173 212 78 51 79 50 176 209   248 105 23 138 22 139 245 108 88 41 183 202 182 203 85 44   25 136 250 103 251 102 28 133 185 200 90 39 91 38 188 197   228 125 3 158 2 159 225 128 68 61 163 222 162 223 65 64   5 156 230 123 231 122 8 </td <td>240</td> <td>113</td> <td>15</td> <td>146</td> <td>14</td> <td>147</td> <td>237</td> <td>116</td> <td>80</td> <td>49</td> <td>175</td> <td>210</td> <td>174</td> <td>211</td> <td>77</td> <td>52</td> | 240 | 113 | 15  | 146 | 14  | 147 | 237 | 116 | 80  | 49  | 175  | 210 | 174 | 211 | 77  | 52  |
| 236 117 11 150 10 151 233 120 76 53 171 214 170 215 73 56   13 148 238 115 239 114 16 145 173 212 78 51 79 50 176 209   248 105 23 138 22 139 245 108 88 41 183 202 182 203 85 44   25 136 250 103 251 102 28 133 185 200 90 39 91 38 188 197   228 125 3 158 2 159 225 128 68 61 163 222 162 223 65 64   5 156 230 123 231 122 8 153 165 220 70 59 71 58 168 217   256 97 31 130 30 131 253 <td>17</td> <td>144</td> <td>242</td> <td>111</td> <td>243</td> <td>110</td> <td>20</td> <td>141</td> <td>177</td> <td>208</td> <td>82</td> <td>47</td> <td>83</td> <td>46</td> <td>180</td> <td>205</td>       | 17  | 144 | 242 | 111 | 243 | 110 | 20  | 141 | 177 | 208 | 82   | 47  | 83  | 46  | 180 | 205 |
| 13 148 238 115 239 114 16 145 173 212 78 51 79 50 176 209   248 105 23 138 22 139 245 108 88 41 183 202 182 203 85 44   25 136 250 103 251 102 28 133 185 200 90 39 91 38 188 197   228 125 3 158 2 159 225 128 68 61 163 222 162 223 65 64   5 156 230 123 231 122 8 153 165 220 70 59 71 58 168 217   256 97 31 130 30 131 253 100 96 33 191 194 190 195 93 36                                                                                                                                                                                                                                             | 236 | 117 | 11  | 150 | 10  | 151 | 233 | 120 | 76  | 53  | 171  | 214 | 170 | 215 | 73  | 56  |
| 248 105 23 138 22 139 245 108 88 41 183 202 182 203 85 44   25 136 250 103 251 102 28 133 185 200 90 39 91 38 188 197   228 125 3 158 2 159 225 128 68 61 163 222 162 223 65 64   5 156 230 123 231 122 8 153 165 220 70 59 71 58 168 217   256 97 31 130 30 131 253 100 96 33 191 194 190 195 93 36                                                                                                                                                                                                                                                                                                         | 13  | 148 | 238 | 115 | 239 | 114 | 16  | 145 | 173 | 212 | 78   | 51  | 79  | 50  | 176 | 209 |
| 25 136 250 103 251 102 28 133 185 200 90 39 91 38 188 197   228 125 3 158 2 159 225 128 68 61 163 222 162 223 65 64   5 156 230 123 231 122 8 153 165 220 70 59 71 58 168 217   256 97 31 130 30 131 253 100 96 33 191 194 190 195 93 36                                                                                                                                                                                                                                                                                                                                                                     | 248 | 105 | 23  | 138 | 22  | 139 | 245 | 108 | 88  | 41  | 183  | 202 | 182 | 203 | 85  | 44  |
| 228 125 3 158 2 159 225 128 68 61 163 222 162 223 65 64   5 156 230 123 231 122 8 153 165 220 70 59 71 58 168 217   256 97 31 130 30 131 253 100 96 33 191 194 190 195 93 36                                                                                                                                                                                                                                                                                                                                                                                                                                 | 25  | 136 | 250 | 103 | 251 | 102 | 28  | 133 | 185 | 200 | 90   | 39  | 91  | 38  | 188 | 197 |
| 5 156 230 123 231 122 8 153 165 220 70 59 71 58 168 217<br>256 97 31 130 30 131 253 100 96 33 191 194 190 195 93 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 228 | 125 | 3   | 158 | 2   | 159 | 225 | 128 | 68  | 61  | 163  | 222 | 162 | 223 | 65  | 64  |
| 256 97 31 130 30 131 253 100 96 33 191 194 190 195 93 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5   | 156 | 230 | 123 | 231 | 122 | 8   | 153 | 165 | 220 | 70   | 59  | 71  | 58  | 168 | 217 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 256 | 97  | 31  | 130 | 30  | 131 | 253 | 100 | 96  | 33  | 191  | 194 | 190 | 195 | 93  | 36  |

| 3.            | •   | 3) |
|---------------|-----|----|
| NIA           | OIC | -, |
| 17 <b>1</b> U | SIL |    |

## 12x12 Franklin Squares

Cor A. J. Hurkens <sup>3) 4)</sup> determined experimentally by an exhaustive search in 3.5 hours with a network of 50 computers in parallel; equivalent in one computer to a total computation time of approximately 165 hours that the *12x12 Franklin Squares* does not exist. No *Semi-Magic*, no *Magic*!

# A Partial Demonstration

The algebraic demonstration of the nonexistence of magic solutions for 12x12 Franklin Squares and in general for the orders n = 8k + 4; is not complicated:

**1)** In the Magic Franklin Squares, the quadrants are also magic; with diagonals that add half of the magic sum:



For any *Franklin Square*:

a+b=a+c; then b=cb+a=b+d; then a=d

In a Magic Franklin Square:

$$a + d = b + c = Ms_{(n)}$$
  
then:

$$a = b = c = d = Ms_{(n)} / 2$$

**2)** In each main diagonal of a semi-magic or magic square of order n = 2k ( $k \ge 2$ ) with the entries of the 2x2 sub-squares that add a common sum, is verified two sets of alternate entries that add a common sum:

As examples of this property, it will be demonstrated for the orders 4 and 6:

**a)** For a square of order n = 4:

 $n_{11} + n_{21} + n_{31} + n_{41} = n_{41} + n_{42} + n_{43} + n_{44}$  (1)

By the property of the 2x2 sub-squares:

 $n_{21} + n_{31} = n_{23} + n_{33}$  and  $n_{42} + n_{43} = n_{22} + n_{23}$  (2)

Replacing (2) in (1) and simplifying:

$$n_{11} + n_{23} + n_{33} + n_{41} = n_{41} + n_{22} + n_{23} + n_{44}$$

Then:

$$n_{11} + n_{33} = n_{22} + n_{44}$$

For the other diagonal:

$$n_{14} + n_{24} + n_{34} + n_{44} = n_{41} + n_{42} + n_{43} + n_{44}$$
 (1)

By the property of the 2x2 sub-squares:

$$n_{24} + n_{34} = n_{22} + n_{32}$$
 and  $n_{42} + n_{43} = n_{22} + n_{23}$  (2)

Replacing (2) in (1) and simplifying:

$$n_{14} + n_{22} + n_{32} + n_{44} = n_{41} + n_{22} + n_{23} + n_{44}$$

Then:

$$n_{14} + n_{32} = n_{41} + n_{23}$$

**b)** For a square of order n = 6:

$$n_{11} + n_{21} + n_{31} + n_{41} + n_{51} + n_{61} = n_{61} + n_{62} + n_{63} + n_{64} + n_{65} + n_{66}$$
 (1)

By the property of the 2x2 sub-squares:

$$n_{21} + n_{51} = n_{25} + n_{55}$$
 and  $n_{31} + n_{41} = n_{33} + n_{43}$   
 $n_{62} + n_{65} = n_{22} + n_{25}$  and  $n_{63} + n_{64} = n_{43} + n_{44}$  (2)

Replacing (2) in (1) and simplifying:

 $n_{11} + n_{25} + n_{33} + n_{43} + n_{55} + n_{61} = n_{61} + n_{22} + n_{43} + n_{44} + n_{25} + n_{66}$ 

Then:

$$n_{11} + n_{33} + n_{55} = n_{22} + n_{44} + n_{66}$$

For the other diagonal:

$$n_{16} + n_{26} + n_{36} + n_{46} + n_{56} + n_{66} = n_{61} + n_{62} + n_{63} + n_{64} + n_{65} + n_{66}$$
 (1)

By the property of the 2x2 sub-squares:

$$n_{26} + n_{56} = n_{22} + n_{52}$$
 and  $n_{36} + n_{46} = n_{34} + n_{44}$   
 $n_{62} + n_{65} = n_{22} + n_{25}$  and  $n_{63} + n_{64} = n_{43} + n_{44}$  (2)

Replacing (2) in (1) and simplifying:

 $n_{16} + n_{22} + n_{34} + n_{44} + n_{52} + n_{66} = n_{61} + n_{22} + n_{43} + n_{44} + n_{25} + n_{66}$ Then:

$$n_{16} + n_{34} + n_{52} = n_{61} + n_{43} + n_{25}$$

**3)** For the hypothetical Magic Franklin Squares of order n = 8k + 4, the diagonals of the quadrants add an odd number:

| k | n=8k+4 | $Ms_{(n)}$ | $M \mathrm{s}_\mathrm{(n)}$ / 2 |
|---|--------|------------|---------------------------------|
| 0 | 4      | 34         | 17                              |
| 1 | 12     | 870        | 435                             |
| 2 | 20     | 4010       | 2005                            |
| 3 | 28     | 10990      | 5495                            |

**4)** For these orders, dividing the diagonal of the quadrants in two for to obtain the value of the sets that add a common sum is obtained a fractional number, in consequence there is not solution.-

For any 8x8 Franklin Squares is possible the following transformation <sup>7)</sup>:

#### $Magic \Leftrightarrow Operation \Leftrightarrow Semi-Magic$

For the *12x12 Franklin Squares:* of the nonexistence of *Magic* solutions, can be inferred the nonexistence of *Semi-Magic* solutions? Based in the following result, the answer is negative:

### 20x20 Franklin Squares

The 20x20 Franklin Squares don't have magic solution however has been obtained Semi-Magic:

|     |     | -   |     |      |     |     |     |     |     |      |     |     |      | -   |      |     |     | -   |     |
|-----|-----|-----|-----|------|-----|-----|-----|-----|-----|------|-----|-----|------|-----|------|-----|-----|-----|-----|
|     | 398 | 2   | 397 | 11   | 396 | 12  | 388 | 14  | 386 | 15   | 387 | 13  | 389  | - 5 | 390  | 4   | 399 | 3   | 400 |
| 395 | 8   | 394 | 9   | 385  | 10  | 384 | 18  | 382 | 20  | 381  | 19  | 383 | 17   | 391 | 16   | 392 | - 7 | 393 | 6   |
| 61  | 338 | 62  | 337 | - 71 | 336 | 72  | 328 | -74 | 326 | - 75 | 327 | 73  | 329  | 65  | 330  | 64  | 339 | 63  | 340 |
| 335 | 68  | 334 | 69  | 325  | 70  | 324 | 78  | 322 | 80  | 321  | 79  | 323 | - 77 | 331 | - 76 | 332 | 67  | 333 | 66  |
| 81  | 318 | 82  | 317 | 91   | 316 | 92  | 308 | 94  | 306 | 95   | 307 | 93  | 309  | 85  | 310  | 84  | 319 | 83  | 320 |
| 315 | 88  | 314 | 89  | 305  | 90  | 304 | 98  | 302 | 100 | 301  | 99  | 303 | 97   | 311 | 96   | 312 | 87  | 313 | 86  |
| 221 | 178 | 222 | 177 | 231  | 176 | 232 | 168 | 234 | 166 | 235  | 167 | 233 | 169  | 225 | 170  | 224 | 179 | 223 | 180 |
| 200 | 203 | 199 | 204 | 190  | 205 | 189 | 213 | 187 | 215 | 186  | 214 | 188 | 212  | 196 | 211  | 197 | 202 | 198 | 201 |
| 121 | 278 | 122 | 277 | 131  | 276 | 132 | 268 | 134 | 266 | 135  | 267 | 133 | 269  | 125 | 270  | 124 | 279 | 123 | 280 |
| 275 | 128 | 274 | 129 | 265  | 130 | 264 | 138 | 262 | 140 | 261  | 139 | 263 | 137  | 271 | 136  | 272 | 127 | 273 | 126 |
| 141 | 258 | 142 | 257 | 151  | 256 | 152 | 248 | 154 | 246 | 155  | 247 | 153 | 249  | 145 | 250  | 144 | 259 | 143 | 260 |
| 255 | 148 | 254 | 149 | 245  | 150 | 244 | 158 | 242 | 160 | 241  | 159 | 243 | 157  | 251 | 156  | 252 | 147 | 253 | 146 |
| 181 | 218 | 182 | 217 | 191  | 216 | 192 | 208 | 194 | 206 | 195  | 207 | 193 | 209  | 185 | 210  | 184 | 219 | 183 | 220 |
| 240 | 163 | 239 | 164 | 230  | 165 | 229 | 173 | 227 | 175 | 226  | 174 | 228 | 172  | 236 | 171  | 237 | 162 | 238 | 161 |
| 101 | 298 | 102 | 297 | 111  | 296 | 112 | 288 | 114 | 286 | 115  | 287 | 113 | 289  | 105 | 290  | 104 | 299 | 103 | 300 |
| 295 | 108 | 294 | 109 | 285  | 110 | 284 | 118 | 282 | 120 | 281  | 119 | 283 | 117  | 291 | 116  | 292 | 107 | 293 | 106 |
| 41  | 358 | 42  | 357 | 51   | 356 | 52  | 348 | 54  | 346 | 55   | 347 | 53  | 349  | 45  | 350  | 44  | 359 | 43  | 360 |
| 355 | 48  | 354 | 49  | 345  | 50  | 344 | 58  | 342 | 60  | 341  | 59  | 343 | 57   | 351 | 56   | 352 | 47  | 353 | 46  |
| 21  | 378 | 22  | 377 | 31   | 376 | 32  | 368 | 34  | 366 | 35   | 367 | 33  | 369  | 25  | 370  | 24  | 379 | 23  | 380 |
| 375 | 28  | 374 | 29  | 365  | 30  | 364 | 38  | 362 | 40  | 361  | 39  | 363 | 37   | 371 | 36   | 372 | 27  | 373 | 26  |

20x20 Semi-Magic Franklin Square obtained by Huub Reijnders <sup>3) 5)</sup>

### Conclusion

The magic squares of order n = 4k + 2 with 2x2 sub-squares  $= 2(n^2 + 1)$  and the Magic Franklin Squares of order n = 8k + 4; does not exist.

### Question

The nonexistence of the 4x4 Franklin Squares is easily demonstrated <sup>4</sup>); now we have the algebraic demonstration for the nonexistence of the Magic Franklin Squares of order n = 8k + 4; then:



*is possible an algebraic demonstration for the nonexistence of 12x12 Semi-Magic Franklin Squares...?* 

#### **References**:

- 1) Schindel D., Rempel M. and Loly P. "Enumerating the bent diagonal squares of Dr Benjamin Franklin FRS". January 2006.-
- 2) Andrews W.S. "Magic Squares and Cubes", 1908. Digitized for Microsoft Corporation by the Internet Archive 2007. From University of California Libraries-
- 3) Hurkens C.A.J. "Plenty of Franklin Magic Squares, but none of order 12". June 2007.-
- 4) Hurkens C.A.J. "Constructing Franklin Magic Squares". October 2007.-
- 5) Arno Van den Essen "De vruchten van een hype: nieuwe en onmogelijke Franklin vierkanten". June 2007.-
- 6) Amela M.A. "Structured 8x8 Franklin Squares", May 2006.-
- 7) Amela M.A. "The Canadian conjecture on the 8x8 Franklin Squares", September 2006.-

- August 2008 -