The groups are classified by the
complement pair patterns of the squares.
The lines joining the complement pairs are not shown here.
Pair numbers are indicated by the same letter, (a, b, ...).
The group form of a square is determined as follows:
Example square and and its 1-dimensional array:
2 3 14 22 24 8 23 19 11 4 25 20 1 9 10 13 12 16 18 6 17 7 15 5 21 2 3 14 22 24 8 23 19 11 4 25 20 1 9 10 13 12 16 18 6 17 7 15 5 21
The 8 aspects of the square:
2 3 14 22 24 17 13 25 8 2 21 5 15 7 17 24 4 10 6 21 8 23 19 11 4 7 12 20 23 3 6 18 16 12 13 22 11 9 18 5 25 20 1 9 10 15 16 1 19 14 10 9 1 20 25 14 19 1 16 15 13 12 16 18 6 5 18 9 11 22 4 11 19 23 8 3 23 20 12 7 17 7 15 5 21 21 6 10 4 24 24 22 14 3 2 2 8 25 13 17 24 22 14 3 2 21 6 10 4 24 17 7 15 5 21 2 8 25 13 17 4 11 19 23 8 5 18 9 11 22 13 12 16 18 6 3 23 20 12 7 10 9 1 20 25 15 16 1 19 14 25 20 1 9 10 14 19 1 16 15 6 18 16 12 13 7 12 20 23 3 8 23 19 11 4 22 11 9 18 5 21 5 15 7 17 17 13 25 8 2 2 3 14 22 24 24 4 10 6 21
The corresponding sequences of the pair indexes:
4 6 16 9 0 18 1 21 22 3 12 19 10 20 17 15 2 14 5 11 13 7 8 24 23 17 1 12 16 24 13 14 21 9 8 18 22 2 5 6 20 3 0 10 23 15 7 11 19 4 1 0 16 17 11 13 19 10 22 9 7 4 14 5 12 21 2 3 23 6 24 15 8 18 20 20 5 13 17 9 1 14 24 21 4 18 19 22 2 6 16 15 3 10 11 0 8 12 23 7 4 5 18 8 0 1 22 23 3 16 17 24 14 15 12 13 9 10 2 19 21 20 6 7 11 5 17 11 9 24 0 23 20 10 3 8 2 22 15 16 13 14 1 19 18 7 21 12 6 4 13 17 18 4 3 5 22 14 15 11 12 9 10 0 7 8 21 1 2 23 24 16 6 19 20 20 18 12 3 17 6 5 23 10 11 8 9 2 22 16 21 14 4 1 24 0 15 13 7 19
The group form of the square is:
1 0 16 17 11 13 19 10 22 9 7 4 14 5 12 21 2 3 23 6 24 15 8 18 20
Pairs having a number at index 1, 3, 5, 9, 15, 19, 21 or 23 are shown in color.
The groups are numbered by size in descending order, i.e., from big to small.
Groups of the same size are numbered in descending order of their group forms.
There are 101,774,553 groups. The biggest group has 228,960 squares. The 87,430,664 smallest groups each have 2, (complementary), squares.
There are 617 group sizes.
Group Size |
Number of Groups |
Group Size |
Number of Groups |
Group Size |
Number of Groups |
Group Size |
Number of Groups |
Group Size |
Number of Groups |
Group Size |
Number of Groups |
---|---|---|---|---|---|---|---|---|---|---|---|
228960 | 1 | 1856 | 5 | 1028 | 8 | 660 | 8 | 416 | 94 | 204 | 230 |
174240 | 2 | 1848 | 4 | 1024 | 16 | 658 | 4 | 414 | 12 | 202 | 44 |
145632 | 2 | 1844 | 4 | 1020 | 4 | 656 | 21 | 412 | 36 | 200 | 358 |
90144 | 1 | 1840 | 4 | 1016 | 4 | 652 | 8 | 410 | 28 | 198 | 12 |
48544 | 3 | 1824 | 4 | 1012 | 4 | 650 | 4 | 408 | 36 | 196 | 176 |
45072 | 2 | 1808 | 8 | 1008 | 12 | 648 | 20 | 404 | 38 | 194 | 32 |
43776 | 1 | 1800 | 4 | 1004 | 8 | 644 | 8 | 402 | 4 | 192 | 498 |
26688 | 2 | 1796 | 4 | 1000 | 4 | 640 | 18 | 400 | 42 | 190 | 28 |
23232 | 2 | 1778 | 8 | 998 | 4 | 636 | 10 | 396 | 32 | 188 | 220 |
22536 | 4 | 1776 | 2 | 992 | 4 | 632 | 28 | 394 | 4 | 186 | 40 |
20336 | 2 | 1772 | 4 | 988 | 4 | 630 | 4 | 392 | 68 | 184 | 302 |
19728 | 4 | 1768 | 4 | 984 | 12 | 628 | 16 | 390 | 12 | 182 | 76 |
18784 | 2 | 1760 | 2 | 980 | 16 | 626 | 4 | 388 | 40 | 180 | 162 |
16896 | 2 | 1736 | 2 | 976 | 8 | 624 | 20 | 386 | 12 | 178 | 48 |
14464 | 2 | 1728 | 10 | 972 | 4 | 622 | 4 | 384 | 60 | 176 | 352 |
14104 | 4 | 1696 | 18 | 968 | 4 | 620 | 16 | 382 | 12 | 174 | 64 |
13808 | 4 | 1680 | 4 | 960 | 14 | 618 | 4 | 380 | 14 | 172 | 208 |
12544 | 2 | 1672 | 8 | 956 | 4 | 616 | 66 | 378 | 16 | 170 | 32 |
12416 | 4 | 1664 | 4 | 952 | 14 | 614 | 4 | 376 | 62 | 168 | 352 |
12192 | 2 | 1634 | 4 | 948 | 4 | 612 | 4 | 374 | 8 | 166 | 80 |
11568 | 2 | 1628 | 4 | 944 | 12 | 610 | 8 | 372 | 56 | 164 | 176 |
10848 | 2 | 1624 | 4 | 936 | 8 | 608 | 38 | 370 | 20 | 162 | 64 |
10272 | 2 | 1616 | 4 | 932 | 8 | 604 | 24 | 368 | 72 | 160 | 514 |
9776 | 4 | 1608 | 6 | 928 | 14 | 600 | 34 | 366 | 4 | 158 | 76 |
9004 | 2 | 1592 | 6 | 920 | 8 | 596 | 20 | 364 | 64 | 156 | 284 |
8352 | 2 | 1584 | 2 | 916 | 4 | 594 | 8 | 362 | 20 | 154 | 92 |
7200 | 8 | 1576 | 2 | 912 | 20 | 592 | 22 | 360 | 82 | 152 | 500 |
7008 | 2 | 1552 | 4 | 910 | 4 | 590 | 4 | 358 | 20 | 150 | 72 |
6656 | 2 | 1548 | 2 | 904 | 4 | 588 | 16 | 356 | 84 | 148 | 282 |
6622 | 4 | 1536 | 2 | 900 | 4 | 584 | 26 | 354 | 12 | 146 | 80 |
6456 | 4 | 1532 | 4 | 898 | 8 | 580 | 26 | 352 | 128 | 144 | 715 |
6432 | 2 | 1520 | 12 | 896 | 29 | 578 | 8 | 350 | 8 | 142 | 128 |
6400 | 2 | 1512 | 4 | 892 | 8 | 576 | 34 | 348 | 60 | 140 | 328 |
6272 | 1 | 1508 | 4 | 888 | 14 | 572 | 16 | 346 | 24 | 138 | 120 |
6096 | 1 | 1504 | 4 | 884 | 12 | 570 | 4 | 344 | 124 | 136 | 870 |
5936 | 6 | 1484 | 8 | 880 | 23 | 568 | 28 | 342 | 12 | 134 | 84 |
5536 | 2 | 1480 | 12 | 878 | 4 | 566 | 12 | 340 | 54 | 132 | 516 |
5264 | 4 | 1474 | 4 | 876 | 8 | 564 | 14 | 336 | 126 | 130 | 180 |
5088 | 2 | 1468 | 4 | 872 | 4 | 562 | 8 | 334 | 12 | 128 | 1125 |
4992 | 4 | 1456 | 4 | 868 | 8 | 560 | 34 | 332 | 26 | 126 | 140 |
4944 | 8 | 1452 | 16 | 864 | 22 | 558 | 4 | 330 | 16 | 124 | 534 |
4904 | 2 | 1448 | 4 | 856 | 4 | 556 | 8 | 328 | 76 | 122 | 100 |
4400 | 2 | 1446 | 4 | 852 | 12 | 554 | 4 | 326 | 36 | 120 | 918 |
4376 | 2 | 1444 | 4 | 850 | 4 | 552 | 20 | 324 | 76 | 118 | 128 |
4320 | 2 | 1442 | 16 | 848 | 34 | 550 | 8 | 322 | 28 | 116 | 702 |
4256 | 7 | 1438 | 4 | 844 | 4 | 548 | 36 | 320 | 157 | 114 | 200 |
4224 | 4 | 1432 | 4 | 840 | 26 | 546 | 8 | 318 | 20 | 112 | 1130 |
4104 | 2 | 1426 | 8 | 836 | 8 | 544 | 46 | 316 | 64 | 110 | 192 |
4096 | 2 | 1424 | 4 | 834 | 4 | 542 | 4 | 314 | 12 | 108 | 902 |
4048 | 2 | 1416 | 4 | 832 | 16 | 540 | 40 | 312 | 132 | 106 | 320 |
3976 | 4 | 1408 | 20 | 828 | 4 | 538 | 4 | 310 | 20 | 104 | 1058 |
3960 | 8 | 1400 | 8 | 826 | 8 | 536 | 22 | 308 | 50 | 102 | 280 |
3696 | 4 | 1380 | 4 | 824 | 8 | 532 | 10 | 306 | 8 | 100 | 1458 |
3632 | 4 | 1376 | 8 | 820 | 8 | 530 | 4 | 304 | 134 | 98 | 372 |
3480 | 4 | 1368 | 4 | 818 | 8 | 528 | 81 | 302 | 12 | 96 | 2135 |
3328 | 2 | 1352 | 6 | 808 | 20 | 526 | 8 | 300 | 60 | 94 | 436 |
3312 | 2 | 1344 | 8 | 804 | 8 | 524 | 18 | 298 | 12 | 92 | 1246 |
3248 | 8 | 1336 | 8 | 800 | 20 | 522 | 4 | 296 | 74 | 90 | 440 |
3216 | 4 | 1328 | 12 | 796 | 8 | 520 | 36 | 294 | 12 | 88 | 2080 |
3120 | 2 | 1324 | 4 | 792 | 26 | 518 | 20 | 292 | 80 | 86 | 532 |
3068 | 4 | 1312 | 2 | 788 | 12 | 516 | 46 | 290 | 8 | 84 | 1796 |
3064 | 2 | 1296 | 10 | 784 | 16 | 512 | 48 | 288 | 162 | 82 | 580 |
3024 | 4 | 1294 | 8 | 780 | 8 | 508 | 18 | 286 | 16 | 80 | 3156 |
2928 | 4 | 1288 | 18 | 778 | 4 | 506 | 8 | 284 | 82 | 78 | 788 |
2876 | 4 | 1276 | 8 | 776 | 28 | 504 | 30 | 282 | 32 | 76 | 2276 |
2844 | 4 | 1272 | 8 | 772 | 8 | 502 | 4 | 280 | 64 | 74 | 792 |
2736 | 4 | 1264 | 8 | 770 | 12 | 500 | 30 | 278 | 16 | 72 | 4171 |
2728 | 8 | 1260 | 4 | 768 | 22 | 498 | 8 | 276 | 104 | 70 | 1072 |
2688 | 4 | 1256 | 4 | 766 | 4 | 496 | 22 | 274 | 16 | 68 | 2938 |
2672 | 6 | 1248 | 2 | 764 | 4 | 492 | 24 | 272 | 152 | 66 | 1228 |
2640 | 4 | 1240 | 12 | 762 | 4 | 490 | 12 | 270 | 8 | 64 | 5806 |
2608 | 4 | 1236 | 4 | 760 | 34 | 488 | 65 | 268 | 86 | 62 | 1500 |
2596 | 6 | 1232 | 6 | 756 | 8 | 486 | 4 | 266 | 12 | 60 | 4360 |
2592 | 2 | 1224 | 4 | 752 | 22 | 484 | 18 | 264 | 104 | 58 | 1852 |
2576 | 4 | 1220 | 4 | 750 | 8 | 482 | 12 | 262 | 28 | 56 | 7452 |
2496 | 2 | 1216 | 14 | 748 | 8 | 480 | 76 | 260 | 104 | 54 | 2432 |
2432 | 12 | 1212 | 4 | 744 | 22 | 476 | 24 | 258 | 8 | 52 | 6492 |
2428 | 4 | 1208 | 8 | 740 | 8 | 474 | 4 | 256 | 193 | 50 | 3332 |
2376 | 8 | 1204 | 4 | 736 | 8 | 472 | 54 | 254 | 8 | 48 | 10913 |
2336 | 4 | 1200 | 4 | 732 | 4 | 470 | 8 | 252 | 110 | 46 | 3624 |
2272 | 8 | 1198 | 4 | 728 | 8 | 468 | 18 | 250 | 20 | 44 | 9976 |
2208 | 8 | 1192 | 4 | 724 | 16 | 466 | 4 | 248 | 104 | 42 | 5208 |
2200 | 4 | 1176 | 4 | 722 | 4 | 464 | 64 | 246 | 4 | 40 | 17918 |
2176 | 8 | 1156 | 4 | 720 | 24 | 462 | 8 | 244 | 110 | 38 | 7096 |
2172 | 4 | 1148 | 4 | 716 | 16 | 460 | 20 | 242 | 16 | 36 | 20852 |
2160 | 4 | 1144 | 4 | 712 | 10 | 456 | 66 | 240 | 214 | 34 | 9464 |
2136 | 4 | 1136 | 12 | 708 | 16 | 454 | 8 | 238 | 32 | 32 | 37725 |
2112 | 4 | 1132 | 2 | 706 | 4 | 452 | 26 | 236 | 132 | 30 | 12612 |
2092 | 6 | 1128 | 12 | 704 | 12 | 450 | 16 | 234 | 16 | 28 | 30346 |
2080 | 8 | 1124 | 6 | 702 | 4 | 448 | 122 | 232 | 236 | 26 | 20136 |
2064 | 2 | 1104 | 6 | 700 | 4 | 446 | 4 | 230 | 32 | 24 | 66514 |
2016 | 12 | 1102 | 4 | 696 | 20 | 444 | 46 | 228 | 62 | 22 | 31356 |
1984 | 16 | 1100 | 10 | 692 | 12 | 442 | 4 | 226 | 36 | 20 | 103524 |
1968 | 4 | 1096 | 4 | 688 | 24 | 440 | 40 | 224 | 263 | 18 | 58760 |
1960 | 9 | 1088 | 16 | 686 | 4 | 438 | 4 | 222 | 24 | 16 | 230507 |
1952 | 10 | 1084 | 6 | 684 | 12 | 436 | 28 | 220 | 142 | 14 | 114724 |
1944 | 1 | 1068 | 8 | 680 | 32 | 432 | 58 | 218 | 16 | 12 | 290230 |
1936 | 10 | 1064 | 6 | 678 | 8 | 430 | 4 | 216 | 258 | 10 | 378612 |
1920 | 2 | 1056 | 15 | 676 | 24 | 428 | 22 | 214 | 24 | 8 | 2170810 |
1904 | 4 | 1054 | 8 | 672 | 52 | 426 | 4 | 212 | 76 | 6 | 991212 |
1888 | 2 | 1048 | 8 | 668 | 12 | 424 | 56 | 210 | 32 | 4 | 9634186 |
1872 | 4 | 1040 | 26 | 664 | 12 | 420 | 48 | 208 | 327 | 2 | 87430664 |
1864 | 4 | 1032 | 2 | 662 | 4 | 418 | 8 | 206 | 36 | - | - |
Heinz, H.D. and J.R. Hendricks "Magic Square Lexicon: Illustrated"
http://recmath.org/Magic%20Squares/Downloads/Lexicon_Sample.pdf,
Magic Square Lexicon: Illustrated, Complementary pair patterns, page 24.